报告人:刘辉(曲阜师范大学)
主持人:张晓颖
时 间:2023.7.9 10:00-11:00
地 点:国盛大酒店福运厅
主办单位:新萄京ag65609com理学院
报告人简介:First, existence and uniqueness of a global solution of the three-dimensional Boussinesq-MHD equations with partial viscosity and damping are proved for. Second, we prove that there is a unique global smooth solution of the 3D generalized MHD-Boussinesq equations with temperature-dependent thermal diffusivity in the Sobolev class for any s>2. Third, global smooth solution of the three-dimensional generalized tropical climate model with partial viscosity and damping is proved in (s>2) for/2and. Finally, using the unique ergodicity and the uniform large deviations results, we prove the large deviations of invariant measure by verifying the Freidlin-Wentzell large deviations upper and lower bounds.
观点综述:博士研究生,青年教授,硕士研究生导师,主要研究方向为随机流体方程,无穷维随机动力系统和流体方程。目前主持国家自然科学基金面上项目一项,主持完成国家,省部级项目四项。近年来在J. Differential Equations、Commun. Math. Sci,Z. Angew. Math. Phys.等SCI期刊上发表论文近40篇。